Wnt-mediated self-renewal of neural stem/progenitor cells.

نویسندگان

  • M Yashar S Kalani
  • Samuel H Cheshier
  • Branden J Cord
  • Simon R Bababeygy
  • Hannes Vogel
  • Irving L Weissman
  • Theo D Palmer
  • Roel Nusse
چکیده

In this work we have uncovered a role for Wnt signaling as an important regulator of stem cell self-renewal in the developing brain. We identified Wnt-responsive cells in the subventricular zone of the developing E14.5 mouse brain. Responding cell populations were enriched for self-renewing stem cells in primary culture, suggesting that Wnt signaling is a hallmark of self-renewing activity in vivo. We also tested whether Wnt signals directly influence neural stem cells. Using inhibitors of the Wnt pathway, we found that Wnt signaling is required for the efficient cloning and expansion of single-cell derived populations that are able to generate new stem cells as well as neurons, astrocytes, and oligodendrocytes. The addition of exogenous Wnt3a protein enhances clonal outgrowth, demonstrating not only a critical role for the Wnt pathway for the regulation of neurogenesis but also its use for the expansion of neural stem cells in cell culture and in tissue engineering.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation, Induction of Neural and Glial Differentiation and Evaluating the Expression of Five Self Renewal Genes in Adult Mouse Neural Stem Cells

Purpose: Isolation, induction of neural and glial differentiation and evaluating the expression of Nucleostemin, ZFX, Hoxb-4, Sox-9 & Bmi-1 self renewal genes in adult mouse neural stem cells. Materials and Methods: Breifly, for isolation of neural stem cells, frontal part of adult mouse brain was minced in PBS and digested by enzyme solution, containing hyaloronidase and trypsin. Isolated cel...

متن کامل

Zrf1 is required to establish and maintain neural progenitor identity.

The molecular mechanisms underlying specification from embryonic stem cells (ESCs) and maintenance of neural progenitor cells (NPCs) are largely unknown. Recently, we reported that the Zuotin-related factor 1 (Zrf1) is necessary for chromatin displacement of the Polycomb-repressive complex 1 (PRC1). We found that Zrf1 is required for NPC specification from ESCs and that it promotes the expressi...

متن کامل

FRS2α Regulates Erk Levels to Control a Self-Renewal Target Hes1 and Proliferation of FGF-Responsive Neural Stem/Progenitor Cells

Fibroblast growth factor (FGF) is among the most common growth factors used in cultures to maintain self-renewal and proliferative capabilities of a variety of stem cells, including neural stem cells (NSCs). However, the molecular mechanisms underlying the control by FGF have remained elusive. Studies on mutant mice of FGF receptor substrate 2α (FRS2α), a central mediator for FGF signaling, com...

متن کامل

Wnt signaling: an essential regulator of cardiovascular differentiation, morphogenesis and progenitor self-renewal.

Emerging evidence indicates that Wnt signaling regulates crucial aspects of cardiovascular biology (including cardiac morphogenesis, and the self-renewal and differentiation of cardiac progenitor cells). The ability of Wnt signaling to regulate such diverse aspects of cardiovascular development rests on the multifarious downstream and tangential targets affected by this pathway. Here, we discus...

متن کامل

TISSUE-SPECIFIC STEM CELLS Ga Subunit Coordinates with Ephrin-B to Balance Self-Renewal and Differentiation in Neural Progenitor Cells

Proper development of the mammalian brain requires that neural progenitor cells balance self-renewal and differentiation under precise temporal and spatial regulation, but the underlying mechanisms are not well understood. In this study, we identify Ga subunit as a positive regulator of mammalian neurogenesis, working with the regulator of G protein signaling (RGS)-mediated ephrin-B signaling p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 44  شماره 

صفحات  -

تاریخ انتشار 2008